Affine and Toric Hyperplane Arrangements
نویسندگان
چکیده
We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For arrangements on the torus, we also generalize Zaslavsky’s fundamental results on the number of regions.
منابع مشابه
Affine and toric arrangements
We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For toric arrangements, we also generalize Zaslavsky’s fundamental results on the number of regions. Résumé. Nous étendons l’opérateur de Billera–Ehrenborg–Readdy entre la trellis d’intersection et la trellis de faces d’un ...
متن کاملOrbifold Cohomology of Hypertoric Varieties
Hypertoric varieties are hyperkähler analogues of toric varieties, and are constructed as abelian hyperkähler quotients T C////T of a quaternionic affine space. Just as symplectic toric orbifolds are determined by labelled polytopes, orbifold hypertoric varieties are intimately related to the combinatorics of hyperplane arrangements. By developing hyperkähler analogues of symplectic techniques ...
متن کاملToric partial orders
We define toric partial orders, corresponding to regions of graphic toric hyperplane arrangements, just as ordinary partial orders correspond to regions of graphic hyperplane arrangements. Combinatorially, toric posets correspond to finite posets under the equivalence relation generated by converting minimal elements into maximal elements, or sources into sinks. We derive toric analogues for se...
متن کاملOn the Geometry of Toric Arrangements
Motivated by the counting formulas of integral polytopes as in Brion–Vergne [5], [4] and Szenes–Vergne [23], we start to lie the foundations of a theory for toric arrangements, which may be considered as the periodic version of the theory of hyperplane arrangements.
متن کاملTropical Compactifications
We study compactifications of very affine varieties defined by imposing a polyhedral structure on the non-archimedean amoeba. These com-pactifications have divisorial boundary with combinatorial normal croosings. We consider some examples including M 0,n ⊂ M 0,n (and more generally log canonical models of complements of hyperplane arrangements) and tropical recompactifications of Chow quotients...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete & Computational Geometry
دوره 41 شماره
صفحات -
تاریخ انتشار 2009